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Recently, optimization has become an integral part of the aerodynamic design process chain. Besides standard

optimization routines, which require some multitude of the computational effort necessary for the simulation only,

fast optimization methods based on one-shot ideas are also available, which are only 4 to 10 times as costly as one

forward flow simulation computation. However, the full potential of mathematical optimization can only be

exploited, if optimal designs can be computed, which are robust with respect to small (or even large) perturbations of

the optimization set-point conditions. That means the optimal designs computed should still be good designs, even if

the input parameters for the optimization problem formulation are changed by a nonnegligible amount. Thus even

more experimental or numerical effort can be saved. In this paper, we aim at an improvement of existing simulation

and optimization technology, developed in the German collaborative effort MEGADESIGN, so that numerical

uncertainties are identified, quantized, and included in the overall optimization procedure, thus making robust

design in this sense possible. These investigations are part of the current German research program MUNA.

Nomenclature

A = approximation matrix
B = reduced Hessian
C = covariance matrix
c = equality constraint
f = objective function
g = reduced gradient
h = inequality constraint
L = Lagrangian function
P = probability measure
p = design variables
P0 = probability
S = pertubation set
s = random variable
s0 = mean value of s
st = subject to
y = state vector
� = reduced gradient
� = Lagrange multiplier
� = Lagrange multiplier
� = mean value
� = variance
’ = Lebesgue density
!i = quadrature weights
1 = indicator function

I. Introduction

U NCERTAINTIES pose problems for the reliability of
numerical computations and their results in all technical

contexts one can think of. They have the potential to renderworthless
even highly sophisticated numerical approaches, because their
conclusions do not realize in practice due to unavoidable variations
in problem data. The proper treatment of these uncertainties within a

numerical context is a very important challenge. This paper is
devoted to the enhancement of highly efficient optimal design
techniques developed in the framework of MEGADESIGN‡ by a
robustness component, which tries to make the optimal design
generated a still good design, if the setting of a specific design point is
varied. The investigations presented here are part of the research
effort MUNA§, which has recently started.

Zang et al. [1] give an overview of existing methods and
algorithms in uncertainty quantification and in robust design of
engineering systems. Because the resulting robust optimization tasks
become much more complex than the usual single set-point case,
most of the techniques developed so far pertain to problems with a
low degree of nonlinearity [2,3]. Putko et al. [4] present results of the
approximate statistical moment method for uncertainty propagation
and robust optimization for a simple quasi-one-dimensional Euler
CFD (computational fluid dynamics) problem. Numerical results for
a two-dimensional airfoil shape optimization problem are obtained
using a numerical evaluation of the expectation integral and a
second-order statistical moment method are compared in [5]. Here,
we try to give some insight into the sources of uncertainties and their
range and compare approaches for their proper treatment on a two-
dimensional problem close to a real configuration.

II. The Nature of Uncertainties
in Aerodynamic Design

For most of what follows it will be enough to consider a rather
abstract but generic form of an aerodynamic shape optimization
problem:

min
y;p
f�y; p� (1)

st c�y; p� � 0 (2)

h�y; p� � 0 (3)
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We think of Eq. (2) as the discretized outer flow equation around
(e.g., an airfoil described by geometry parameter p 2 Rnp ). The
vector y is the state vector (velocities, pressure, etc.) of the flow
model Eq. (2), and we assume that Eq. (2) can be solved uniquely for
y for all reasonable geometries p. The objective in Eq. (1)
f: �y; p�7!f�y; p� 2 R typically is the drag to be minimized. The
restriction in Eq. (3) typically denotes lift or pitching moment
requirements. To make the discussion here simpler, we assume a
scalar valued restriction, that is, h�y; p� 2 R. The generalization of
the discussions following to more than one restriction is straight
forward. In contrast to previous papers on robust aerodynamic
optimization, we treat the angle of attack as a fixed parameter that is
not adjusted to reach the required lift (cf. [5–7]). Therefore, we
present in the following robust optimization strategies to solve the
lift-constrained drag minimization problemwith respect to uncertain
parameters.

Uncertainties arise in all aspects of aerodynamic design. However,
we want to limit the discussion here to uncertainties that cannot be
avoided at all before constructing a aircraft.We distinguish two types
of uncertainties: uncertainties with respect to the flight conditions
and geometry uncertainties. The main characteristics of the
macroscopic flight conditions are the angle of incidence and the
velocity (Mach number) of the plane. One generally knows the rough
values for these characteristics, but nevertheless, there will be
unavoidable deviations from the nominal flight condition. In the
numerical discussion following, we focus on theMach number as an
uncertain parameter within limits. We assume (mainly due to lack of
statistical data) a truncated normal distribution of the perturbations
with the nominal Mach number as an expected value. The resulting
robust problem formulations discussed in the following requiremore
computational effort but can be reformulated as deterministic
problems similar to Eqs. (1–3).

Geometry uncertainties, on the other hand, require changing the
optimal design problem dramatically. With geometry uncertainties,
we mean the case that the real geometry deviates from the planned
geometry characterized typically by splines parameterized byp. The
parameters p span a space of possible geometries of dimension np.
The sources for deviations from the planned geometry may lie in
manufacturing, usage, and wearing of the aircraft or weather
conditions (e.g., ice crusts). The only sure information about these
deviations is that they will not lie within the geometry space spanned
by the spline parameters p. Here, one rather has to work in the shape
space, which is in general a function space that requires at least the
usage of a free node parameterization. The ultimate goal of these
investigations is the robust design under moderate shape fluctuations
from a function space still to be determined. We leave these
discussions to subsequent publications.

III. Robust Formulations of Aerodynamic
Design Problems

The general deterministic problem formulation in Eqs. (1–3) is
influenced by stochastic perturbations. We assume that there are
uncertain disturbances s 2 S � Rn involved in the form of random
variables associated with a probability measure P with Lebesgue
density ’: S! R�0 such that the expected value of s can be written
as

E�s� �
Z
S

s dP�s� �
Z
S

s’�s� ds

and the expected value of any function g: S! R is written as

E�g� �
Z
S

g�s� dP�s� �
Z
S

g�s�’�s� ds

The dependence can arise in all aspects, and a naive stochastic variant
might be rewritten as

min
y;p
f�y; p; s� (4)

st c�y; p; s� � 0 (5)

h�y; p; s� � 0 (6)

This formulation still treats the uncertain parameter as an additional
fixed parameter. The optimal solution should be stablewith respect to
stochastic variations in s. The literature can be classified in the
following ideal classes: min–max formulation, semi-infinite
formulation, and chance constraints.

A. Min–Max Formulations

The min–max formulation aims at the worst-case scenario:

min
ys;p

max
s2S

f�ys; p; s� (7)

st c�ys; p; s� � 0; 8 s 2 S (8)

h�ys; p; s� � 0; 8 s 2 S (9)

Because the state vector ydepends on the uncertain parameter s, there
is a different ys for each s. The min–max formulation is obviously
independent of the stochastic measure P and, thus, needs only the
perturbation set S as input. If the probability density function of the
uncertain parameter is not available, this approach could potentially
be an attractive strategy. Otherwise, this formulation will ignore
problem-specific information, if it is at hand and will lead to overly
conservative designs.We do not treat this formulation furthermore in
this paper.

B. Semi-Infinite Formulations

The semi-infinite reformulation aims at optimizing the average
objective function but maintaining the feasibility with respect to the
constraints everywhere. Thus, it aims at an average optimal and
always feasible robust solution. The ideal formulation is of the form

min
ys;p

Z
S

f�ys; p; s� dP�s� (10)

st c�ys; p; s� � 0; 8 s 2 S (11)

h�ys; p; s� � 0; 8 s 2 S (12)

Because the state vector y depends on the uncertain parameter s as in
the min–max formulation, there is a different ys for each s. This
definition of robustness can also be found in [5,8]. Semi-infinite
optimization problems have been treated directly so far only for
rather small and weakly nonlinear problems, such as [9]. For the
numerical treatment of complicated design tasks, one has to
approximate the integral in the objective Eq. (10). If one assumes that
the random variable confers to a multivariate truncated normal
distribution, that iss� 1

const
N��; C� � 1S, with expected value vector

�, covariance C, and indicator function

1 S�x� �
�
1; if x 2 S
0; if x =2 S

the integral in Eq. (10) can be efficiently evaluated by a Gaussian
quadrature for small stochastic dimensions, where the quadrature
points fsigNi�1 are the roots of a polynomial belonging to a class of
orthogonal polynomials. Because of the exponential growth of the
effort with increasing dimension, the full tensor product Gaussian
quadrature rule should be replaced in the higher dimensional case by
Smolyak-type algorithms, which use a recursive contribution of
lower-order tensor products to estimate the integral [10]. In the case
of a lift constraint in Eq. (12) to be satisfied overall within a set of
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Mach numbers, we can take advantage of the fact that the lift is
monotonically increasing with theMach number. Consequently, it is
enough to keep a lift constraint for the smallest Mach number under
consideration. Therefore, we can reformulate the problem in
Eqs. (10–12) in an approximate fashion in the form of a multiple set-
point problem for the set points fsigNi�1:

min
yi;p

XN
i�1

f�yi; p; si�!i (13)

st c�yi; p; si� � 0; 8 i 2 f1; . . . ; Ng (14)

h�yi; p; smin� � 0 (15)

where !i denote the quadrature weights. We will investigate this
formulation later on. As an example, we look at the Mach number as
being the uncertainty s, which is scalar valued [i.e.
s� 1

const
N��; �2� � 1S] and we choose just four Gaussian points.

Figure 1 shows a particular choice for the density function of the
Mach number with expected value s0 � 0:73 and the computed
Gaussian points. So we achieve feasibility over the whole range of
Mach numbers independent from the discretization in the probability
space and at a given angle of attack. The robust formulations in [5,6]
differ in this point from Eqs. (13–15), because the constraints on the
lift are eliminated by choosing an appropriate value for the angle of
attack for each realization si of the Mach number.

C. Chance Constraint Formulations

Chance constraints leave some flexibility with respect to the
inequality restrictions (cf. [11]). The inequality restrictions are only
required to hold with a certain probability P0:

min
ys;p

Z
S

f�ys; p; s� dP�s� (16)

st c�ys; p; s� � 0; 8 s 2 S (17)

P �fsjh�ys; p; s� � 0g� � P0 (18)

So far, chance constraints are used mainly for weakly nonlinear
optimization problems [2,12]. In the context of structural
optimization (which is typically a bilinear problem), this formulation
is also called reliability-based design optimization. For more
complex problems, we need again some simplification. In [4] this is
performed by applying a Taylor series expansion about a nominal set
point s0 :� �, which is, at the same time, the expected value of the
random variable s. Suppressing further arguments �y; p� for the
moment, the Taylor approximation of the second order of f in
Eq. (16) gives

f̂�s� :� f�s0� � @f�s
0�

@s
�s 	 s0� � 1

2
�s	 s0�> @

2f�s0�
@s2

�s 	 s0�

Integrating this, we observe

Z
S

f̂�s� ds� f�s0� � 1

2

Xk
i�1

@2f�s0�
@s2i

Var�si�

whereVar�si� is the variance of the ith component of s. Obviously, a
first-order Taylor series approximation would not give any influence
of the stochastic information, which is the reason why we use an
approximation of second order for the objective. To deal with the
probabilistic chance constraint Eq. (18), we have to approximate its
probability distribution by something simple (e.g., again a truncated
normal distribution). Therefore, we use a first-order Taylor
approximation there, because we know that this is again a truncated

normal distribution, unlike the second-order approximation (cf.
[13]):

ĥ�s� :� h�s0� � @h�s
0�

@s
�s	 s0� � 1

const
N�h�s0�; �2h� � 1Sh

where we assume for simplicity that h is scalar valued.
Nowwe can put the Taylor approximations together and achieve a

deterministic single set-point optimization problem. Because the
flowmodel in Eq. (17) depends also on the uncertainties s, we should
be aware that the derivatives with respect to smean total derivatives.
We express this by reducing the problem in writing y� y�p; s� via
Eq. (17):

min
p
f�y�p; s0�; s0� � 1

2

Xk
i�1

@2f�y�p; s0�; s0�
@s2i

Var�si� (19)

st P�fsjĥ�y�p; s�; s� � 0g� � P0 (20)

For the computation of the total derivatives we can introduce a
sensitivity equation as in [14].

As an example, again we look at the case that s is scalar
valued, that is, s� 1

consts
N��; �2� � 1
l;u�, where consts�R

u
l

1��������
2��2
p exp

�
	 �x	��2

2�2

�
dx is the scaling factor to normalize the

density function. Hence, we obtain the distribution of the
probabilistic constraint:

ĥ�s� � 1

constĥ
N

�
h�s0�;

�
@h�s0�
@s

�
2

�2
�
� 1

@h�s

0 �
@s l�h�s0�;@h�s

0 �
@s u�h�s0��

where constĥ � 1�������������������
2��@h�s

0 �
@s �

2�2
p R @h�s0 �

@s u�h�s0�
@h�s0�
@s l�h�s0�

exp

�
	 �x	h�s0��2

2�@h�s
0 �

@s �
2�2

�
dx.

Finally, the following equivalent representations of the chance
constraint:

P �fsjĥ�y�p; s�; s� � 0g� � P0 , P�fsjĥ�y�p; s�; s� � 0g�
� 1 	 P0

lead to the deterministic optimization problem

min
p
f�y�p; s0�; s0� � 1

2

Xk
i�1

@2f�y�p; s0�; s0�
@s2i

Var�si� (21)
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Fig. 1 Gaussian points and the density function.
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st
1

constĥ

��������������������������
2��@h�s0�

@s
�2�2

q
Z

0

@h�s0�
@s

l�h�s0�
exp

�
	 �x 	 h�s

0��2

2�@h�s0�
@s
�2�2

�
dx

� 1 	 P0 (22)

The propagation of the input data uncertainties is estimated by the
combination of a first-order second-moment method and a second-
order second-moment method, presented for example in [4].

Because there is no closed-form solution for the integral, the
chance constraint is evaluated by a numerical quadrature formula. In
the following, we will compare the chance constraint formulation
evaluating the objective Eq. (16) by a numerical quadrature formula
with the formulation in Eq. (21) where the objective omits a Taylor
expansion.

IV. One-Shot Aerodynamic Shape Optimization and
its Coupling to Robust Design

Novel one-shot aerodynamic shape optimization in the form of
Eqs. (1–3) has been introduced in [15,16]. This has the potential for
fast convergence in only a small multiple of central processing unit
time compared with one flow simulation. These methods are based
on approximate reduced sequential quadratic programming (SQP)
iterations in order to generate a stationary point satisfying the first-
order Karush–Kuhn–Tucker optimality conditions.

In this context, a full SQP approach reads as

Lyy Lyp h>x c>x
Lpy Lpp h>p c>p
hx hp 0 0

cx cp 0 0

2
664

3
775

�y
�p
��
��

0
BB@

1
CCA�

	L>y
	L>p
	h
	c

0
BB@

1
CCA

yk�1

pk�1

�k�1

�k�1

0
BB@

1
CCA�

yk

pk

�k

�k

0
BB@

1
CCA� � �

�y
�p
��
��

0
BB@

1
CCA

(23)

The symbol L denotes the Lagrangian function. We assume that the
lift constraint h is active at the solution, which is the reason that we
formulate it rather as an equality condition in the single set-point
case. The approach in Eq. (23) is not implementable in general,
because one usually starts out with a flow solver for c�y; p� � 0 and
seeks amodular couplingwith an optimization approach, which does
not necessitate changing the whole code structure, as would be the
case with formulation in Eq. (23). A modular, but nevertheless
efficient, alternative is an approximate reduced SQP approach as
justified in [17]

Fig. 2 Grid for the RAE2822 airfoil, showing the total geometrical
plane (above) and zoom around the airfoil (below).
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0 0 0 A>

0 B � c>p
0 �> 0 0

A cp 0 0

2
664

3
775

�y
�p
��
��

0
BB@

1
CCA�

	L>y
	L>p
	h
	c

0
BB@

1
CCA

yk�1

pk�1

�k�1

�k�1

0
BB@

1
CCA�

yk

pk

�k

�k

0
BB@

1
CCA� � �

�y
�p
��
��

0
BB@

1
CCA

(24)

where

� � h>p � c>p �; such that A>��	h>x

The matrix A denotes an appropriate approximation of the system
matrix cx, which is used in the iterative forward solver. An
algorithmic version of this modular formulation is given by the
following steps:

1)Generate�k by performingN iterations of an adjoint solverwith
right-hand-side f>y �yk; pk� starting in �k.

2) Generate�k by performingN iterations of an adjoint solverwith
right-hand-side h>y �yk; pk� starting in �k.

3) Compute approximate reduced gradients:

g� f>p � c>p �k�1; � � h>p � c>p �k�1

4) Generate Bk�1 as an approximation of the (consistent) reduced
Hessian.
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Fig. 6 Comparison of the distribution of the pressure coefficient over the airfoil.
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5) Solve the quadratic program:

B �
�> 0

� �
�p
�k�1

� �
� 	g
	h

� �

6) Update pk�1 � pk ��p.
7) Compute the corresponding geometry and adjust the

computational mesh.
8) Generate yk�1 by performing N iterations of the forward state

solver starting from an interpolation of yk at the new mesh. This
highly modular algorithmic approach is not an exact transcription of
Eq. (24), but is shown in [17] to be asymptotically equivalent and to
converge to the same solution. The overall algorithmic effort for this
algorithm is typically in the range of factor 7 to 10 compared with a
forward stationary simulation.

Nowwegeneralize this algorithmic framework to the semi-infinite
problem formulation in Eqs. (10–12). Numerical approaches to this
problem class have been proposed already in [18,19].

For the sake of simplicity, we restricted the formulation to a
problem with two set points coupled via the objective, which is a
weighted sumof all set-point objectives (weights:!1,!2), and via the
free optimization variables p, which are the same for all set points.
The generalization to more set points (i.e., four points in our
numerical results) is then obvious. Furthermore, in the case of the
restriction h being the lift, we know that it is monotonic in the Mach
number. Therefore, it is enough to formulate the constraint for the
smallest value smin. The corresponding Lagrangian in our example is

L�y1; y2; p; �1; �2� �
X2
i�1

!ifi�yi; p; si�

�
X2
i�1

�>i ci�yi; p; si� � �h�ymin; p; smin� (25)

The preceding approximate reduced SQP method applied to this
case can be written in the following form:

0 0 0 0 A>1 0

0 0 0 0 0 A>2
0 0 B �1 c>1;p c>2;p
0 0 �1 0 0 0

A1 0 c1;p 0 0 0

0 A2 c2;p 0 0 0

2
6666664

3
7777775

�y1
�y2
�p
��
��1
��2

0
BBBBBB@

1
CCCCCCA
�

	L>y1
	L>y2
	L>p
	h
	c1
	c2

0
BBBBBB@

1
CCCCCCA

(26)

We notice that the linear subproblems involving matrices A>i are to
be solved independently, and, therefore, trivially in parallel. The
information from all these parallel adjoint problems is collected in
the reduced gradient:

g�
X2
i�1

!if
>
p �

X2
i�1

c>p �i

Next, the solution of optimization step

B �1
�>1 0

� �
�p
�k�1

� �
� 	g
	h

� �

is distributed to all approximate linearized forward problems:

Ai�yi � ci;p�p�	ci

which can then again be performed in parallel.

V. Numerical Results

We investigate the problem discussed in [16], that is, the shape
optimization of an RAE2822 profile in transonic Euler flow, by the
use of the CFD software FLOWer provided by DLR within a one-
shot framework. The block-structured FLOWer code solves the
three-dimensional compressible Reynolds-averaged Navier-Stokes
equation in integral form and provides different turbulence models.
The equations are solved by a finite-volume method with second-
order upwind or central space discretization. The discrete equations
are integrated explicitly by multistage Runge–Kutta schemes, using
local time stepping and multigrid acceleration. In our example, the
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Fig. 8 Lift performance of an optimized airfoil.
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space is discretized by a 133 
 33 grid, see Fig. 2. For
parameterization, the airfoil is decomposed into thickness and
camber distribution. Then, only the camber of the airfoil is
parameterized by 21Hicks–Henne functions, and the thickness is not
changed during the optimization process.

In this section, we consider the Mach number and the angle of
attack as an uncertain parameter. TheMach number is assumed to be
in the range of [0.7, 0.76] and the angle of attack in the range of [1.8,
2.2]. Under the assumption of truncated normally distributed
parameters, we obtain the density functions shown next in Fig. 3.

At first, we perform numerical comparisons between a single set-
point problem formulation at the set point s0 � 0:73 Mach with the
robust formulations in Secs. III.B and III.C. In particular, we
compare four formulations: 1) nonrobust optimization at the Mach
number 0.73 (fixedMach number 0.73), 2) semi-infinite formulation
of Eqs. (13–15), 3) chance constraint formulation of Eqs. (21) and
(22) without higher-order terms in the objective, and 4) with higher-
order terms in the objective.

Figure 4 shows the evaluations of the objective (drag) in these
cases, and Fig. 5 shpes the constraint (lift).

We state the following observations: first, the higher-order terms
in the objective of the chance constraint formulation in Eqs. (21) and
(22) seem to make no difference because the two resulting drag
curves are almost the same (cf. Fig. 4), which means that they can be
safely omitted. Second, the semi-infinite robust formulation has a
better lift-to-drag ratio than the chance constraint formulation, in
particular in the region above the set point 0.73, due to the fact that
the semi-infinite formulation shows a higher lift over thewhole range
of variations (cf. Fig. 5) and for the greater part a better drag
performance than the chance constraint (cf. Fig. 4). The distribution
of the pressure coefficient over the airfoil at three different Mach
numbers is depicted in Fig. 6. At the set point 0.73, the distribution of
the pressure coefficient of the semi-inifinite formulation shows a
shock wave over the upper surface of the profile, which produces a
higher drag than the other solutions. But we can observe that the
semi-infinite formulationwill lead to the best distribution if theMach
number deviates from the set point. So, the semi-infinite
formulations lead to a robust solution, which gives a little bit higher

drag at the nominal point but a better performance over the whole
range of variations.

Furthermore, we consider the angle of attack as an additional
uncertain parameter. Figure 7 shows the drag performance of the
solution of the semi-infinite optimization problem comparedwith the
solution of the single set-point optimization.

The semi-infinite formulation gives a higher drag over the whole
range of variations than the usual single set-point case, but the
solution of the semi-infinite formulation is always feasible, as
required; whereas the single set-point optimization achieves the
given lift only in a small region of the variations (cf. Fig. 8). In
summary, the semi-infinite formulation leads, once again, to a
better lift-to-drag ratio just as in the one-dimensional stochastic
case.

The different optimized shapes are shown in Fig. 9. The semi-
infinite formulation differs the most from the single set-point case
due to the requirement of feasibility over the whole range of
uncertainties.

VI. Conclusions

Robust design is an important task to make aerodynamic shape
optimization relevant for practical use. It is also highly challenging
because the resulting optimization tasks become much more
complex than in the usual single set-point case. Essentially, two
robust optimization formulations are compared in this paper.
Because of the fact that the inequality constraint is almost linear in the
uncertain parameter, the solution of the chance constraint and of the
semi-infinite formulation are quite similar. Nevertheless, the
discretized semi-infinite formulation seems to be of advantage in a
numerical test case close to a real configuration.
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